Conformational Change in an MFS Protein: MD Simulations of LacY
نویسندگان
چکیده
منابع مشابه
Evidence for an intermediate conformational state of LacY.
LacY mutant Cys154 → Gly exhibits a periplasmic-closed crystal structure identical to the WT, but is periplasmic-open in the membrane. The mutant hardly catalyzes transport, but binds galactosides from either side of the membrane with the same affinity and is resistant to site-directed proteolysis relative to the pseudo-WT. Site-directed alkylation was also applied to 11 single-Cys mutants in C...
متن کاملMD simulations and FRET reveal an environment-sensitive conformational plasticity of importin-β.
The nuclear pore complex mediates nucleocytoplasmic transport of macromolecules in eukaryotic cells. Transport through the pore is restricted by a hydrophobic selectivity filter comprising disordered phenylalanine-glycine-rich repeats of nuclear pore proteins. Exchange through the pore requires specialized transport receptors, called exportins and importins, that interact with cargo proteins in...
متن کاملSingle-molecule FRET reveals sugar-induced conformational dynamics in LacY.
The N- and C-terminal six-helix bundles of lactose permease (LacY) form a large internal cavity open on the cytoplasmic side and closed on the periplasmic side with a single sugar-binding site at the apex of the cavity near the middle of the molecule. During sugar/H(+) symport, an outward-facing cavity is thought to open with closing of the inward-facing cavity so that the sugar-binding site is...
متن کاملMD simulations of spontaneous membrane protein/detergent micelle formation.
The in vitro study of membrane proteins for the purpose of physicochemical analysis or structure determination often relies upon successful reconstitution into detergent micelles. Moreover, a number of biological processes such as membrane protein folding and transport rely on lipid interactions which may resemble the micellar environment. Little is known about the structures of these micelles ...
متن کاملCoarse-grained MD simulations of membrane protein-bilayer self-assembly.
Complete determination of a membrane protein structure requires knowledge of the protein position within the lipid bilayer. As the number of determined structures of membrane proteins increases so does the need for computational methods which predict their position in the lipid bilayer. Here we present a coarse-grained molecular dynamics approach to lipid bilayer self-assembly around membrane p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structure
سال: 2007
ISSN: 0969-2126
DOI: 10.1016/j.str.2007.06.004